

The Experience of Performing Concurrent Elective Circumcision During Paediatric Laparoscopic Inguinal Hernia Repair

Norhafiza Ab. Rahman^{1, 2}, Dayang Anita Abdul Aziz², Felicia Lim³, Rufina Teo³, Marjmin Osman²

¹Department of Surgery, Kuliyyah (Faculty) of Medicine, International Islamic University Malaysia, Pahang, Malaysia ²Paediatric Surgery Division, Department of Surgery, UKM Medical Centre, Kuala Lumpur, Malaysia ³Department of Anesthesiology, UKM Medical Centre, Kuala Lumpur, Malaysia

26th September 2019 | The 14th Congress of ASEAN Society of Paediatric Surgeons, Hanoi, Vietnam

Outline

Research Background Methodology Results Discussion Conclusion References

Research Background

- Indications of circumcision ranging from medical to social, cultural & religious reasons
- By 2016, WHO estimated the global prevalence of 38.7%^{1, 2}

- Benefits, reduces risk of:
 - UTI by 23.3% & maximum during infancy³
 - HIV infection^{2, 4}
 - Other sexually transmitted infections e.g HPV, genital herpes & syphillis^{5, 6}
- Generally a safe procedure but associated with complication especially if not done by trained personnel⁷ or performed in the community setting⁸

Research Question

What are the effects of morbidity & recovery on patients who have concurrent elective circumcision (EC) during laparoscopic inguinal hernia (LIH) repair?

Primary Objective

To measure rate of complication of the abdominal wound associated with concurrent EC during LIH repair

Secondary Objectives

To compare patients who undergone LIH repair with & without EC in terms of:

- i. Morbidity
 - Duration of post-operative hospitalization
 - Post-operative pain score
- ii. Recovery
 - Return to routine activity

Methodology

Study Design

- Ambispective cohort study:
 - i. Retrospective, January 2013 May 2017
 - ii. Prospective, June 2017 August 2018
- Single centre study in Paediatric Surgery Unit, UKMMC
- Data obtained from:
 - i. UKMMC medical records
 - ii. Interview with parents using Parents' Satisfaction to Paediatric Laparoscopic Surgery⁹ questionnaire

Study population

- Inclusion criteria:
 - Aged 1 month 12 years
 - Boys with patent processus vaginalis (PPV) & normal penis, underwent LIH repair
- Exclusion criteria:
 - Female
 - Abnormal penis
 - Open herniotomy for any reason
 - Children with special needs
- \circ Grouping:
 - i. <u>Intervention</u> = LIH repair + EC
 - ii. <u>Control</u> = LIH repair

Graph 1 Number of subjects in both arms according to timeline

Data Sampling & Analysis

- Non-probability sampling
- Time points:
 - i. Post-operative day 1
 - ii. Post-operative day 7
 - iii. Post-operative 30 days
- Data analysis using SPSS[®] version 23
- $\circ~\alpha$ (type 1 error) taken at 0.05

Standardization of Surgical Techniques

- i. Laparoscopic inguinal hernia (LIH) repair:
 - 3 abdominal incisions:
 - i. 6 mm supraumbilical camera port
 - ii. 3 mm portless working instruments over right & left lumbar
 - Approximation of pre-peritoneal fascia of internal ring by non-absorbable suture through purse-string method
 - Completeness checked by external squeeze test¹⁰
- ii. Elective circumcision (EC):
 - Circumferential excision of foreskin in layers using bipolar diathermy
 - Skin approximation through simplified sutureless technique using cyanoacrylate skin glue¹¹

Results

Table 1 Demographic characteristics of the study population

	Total (N = 237)	Intervention, LIH repair and circumcision (N = 147)	Control, LIH repair (N = 90)	p-value
Age, n (%)				0.735
1 month – 3 years	207 (87.3)	128 (87.1)	79 (87.8)	
>3 – 7 years	29 (12.2)	18 (12.2)	11 (12.2)	
>7 – 12 years	1 (0.4)	1 (0.7)	-	
Disease, n (%)				0.893
Inguinal hernia	227 (95.8)	141 (95.9)	86 (95.6)	
Hydrocoele	10 (4.2)	6 (4.1)	4 (4.4)	
Side, n (%)				0.173
Right	103 (43.5)	67 (45.6)	36 (40.0)	
Left	46 (19.4)	23 (15.6)	23 (25.6)	
Bilateral	88 (37.1)	57 (38.8)	31 (34.4)	

	Intervention, LIH repair and circumcision (n = 147)	Control, LIH repair (n = 90)	p-value
Post-operative complications, n (%)			0.770
Yes	6 (4)	3 (3.3)	
No	141 (96)	87 (96.7)	
Types of post-operative complications, n (%)			
Major, n (%)			-
Burst abdomen	0 (0)	1 (33.3)	
Minor, n (%)	6 (100)	2 (66.6)	0.721
Bleeding	3	1	
Surgical site infection	1	1	
Haematoma	1	0	
Suture granuloma	1	0	

Table 2 Post-operative complications related to abdominal wound

Relative risk [RR] 1.2

Table 3 Morbidity and recovery outcomes

	Intervention, LIH repair and circumcision (n = 147)	Control, LIH repair (n = 90)	p-value
Duration of post-operative hospitalization in days, median (range)	0 (4)	0 (1)	0.470
Post-operative pain score d1, median (range) ^a	3 (10)	3 (8)	0.590
Post-operative pain score d7, median (range) ^a	0 (5)	0 (0)	0.344
Return to routine activity (days), median (range)	2 (20)	1 (13)	0.212

^aPain score only available for prospective (n = 45)

Discussion

Post-operative complications related to abdominal wound

- 4% from intervention & 3 % from control groups; 1.7% for bleeding, 0.8% for SSI, 0.4% for haematoma development & 0.4% for suture granuloma
- Comparable to previous studies:
 - 2% rate of bleeding from LIH wound from a RCT¹²
 - 1% SSI rate from LIH wound from a systematic review of 22 studies¹³
 - 1.8% SSI & 1.6% suture granuloma over LIH wound from a study of 495 patients with 502 LIH repairs¹⁴
- Glans penis colonized by organisms, non-uropathogenic & uropathogenic¹⁵
- Complication rate including SSI ranges between 0 4% from different studies on circumcision^{11, 16, 17}
- Our overall complication over abdominal wound remained low despite addition of RC

Morbidity & recovery outcomes

- Hospital stay
 - Previous studies report stay <24 hours following LIH repair^{18, 19, 12}, a trend found similar in our study despite after addition of EC
- Post-operative pain score
 - We reported median pain score of 3 from both study groups on day 1, slightly high than previous study¹⁹
 - All patients improved within 1 week
- Return to routine activity
 - We reported faster return to routine activity; 2 days for intervention & 1 day for control
 - A RCT reports return to routine activity at 2.5 days after unilateral LIH repair & 2.4 days after bilateral LIH repair¹²
 - 2.4 days after bilateral LIH repair from another study¹⁹

Limitations

- i. Non-probability sampling
- ii. Recall bias for retrospective data collection involving parents' interview
- iii. Small sample due to single institution involvement

Recommendations

- i. Randomized controlled trial
- ii. Involvement of more patients by extension of study period & multi-centres involvement

Conclusion

- Our results suggested similar clinical outcomes for patients with & without addition of EC to primary surgery of LIH repair
- This combination surgery is safe & feasible
- Parents of potential patients should be given the option & advised towards this practice whenever feasible

Despite the limitations, our study:

- Produced comparable results on the outcomes of paediatric LIH repair
- Provides a new insight on the practice of concurrent EC
- Can serve as a baseline to guide clinical decision & stimulate further study

References

- 1. Morris BJ WR, Henebeng EB, Tobian AAR, Klausner JD, Banerjee J, Hankins CA. Estimation of country-specific and global prevalence of male circumcision. *Popul Health Metrics.* 2016;14(1).
- 2. Organization WH. WHO/UNAIDS neonatal and child male circumcision: A global review. WHO Library Cataloguing-in-Publication Data. 2010
- 3. Morris BJ WT. Circumcision and lifetime risk of urinary tract infection: A systematic review and meta-analysis. *The J of Urol.* 2013;189(6):2118-2124.
- 4. Tobian AA GR. The medical benefits of male circumcision. JAMA Netw Open. 2011;306(13):1479-1480.
- 5. Pintye J BJ, Manhart LE, Celum C, Ronald A, Mugo N, Mujugira A, Cohen C, Were E, Bukusi E, Kiarie J, Heffron R. Decreased incidence of syphilis in both men and women associated with male circumcision: A prospective study among HIV-1 serodiscordant heterosexual African couples. *Lancet Glob Health.* 2014;2(11):e664-e671.
- 6. Tobian AA GR, Quinn TC. Male circumcision for the prevention of acquisition and transmission of sexually transmitted infections: The case for neonatal circumcision. *Arch Pediatr Adolesc Med.* 2010;164(1):78-84.
- 7. Krill AJ PL, Palmer JS. Complications of circumcision. *The Scientific World J.* 2011;11(NA):2458-2468.
- 8. Gold G YS, O'Brien M, Babl FE. Complications following circumcision: Presentations to the emergency department. *J Paediatr Child Health.* 2015;51(12): 1158-1163.
- 9. Dayang AA RT, Lew WN, Nurnadia K, Them WW, Faizal HM, Nora R, Muda N. Parents' satisfaction to paediatric laparoscopic surgery. *Medicine & Health.* 2011;6, No 1 (supp).
- 10. Dayang AA MO, Felicia L, Rufinah T, Zarina AL, Mohd RAM. External squeeze test during pediatric laparoscopic hernia repair: a novel on-table assessment to ensure complete closure of patent processus vaginalis. *Open Access Surgery*. 2018;Volume 11:1-3.
- 11. Mohd H DA, Zulkifli M, Tan HL. A prospective, randomised controlled trial comparing sutureless cyanoacrylate opposition with conventional sutured circumcision. Int J Urol. 2012;19 Suppl 1:5-480.
- 12. Gause CD CM, Yang J, Hsiung G, Rhee D, Salazar JH, Papandria D, Pryor II HI, Stewart D, Lukish J, Colombani P, Chandler, NM, Johnson E, Abdullah F. Laparoscopic versus open inguinal hernia repair in children ≤3: A randomized controlled trial. *Pediatric Surg International*. 2016;33(3):367-376.
- 13. Esposito C, St. Peter SD, Escolino M, Juang D, Settimi A, Holcomb GW. Laparoscopic versus open inguinal hernia repair in pediatric patients: A systematic review. *J of Laparoendoscopic & Advanced Surgical Techniques.* 2014;24(11):811-818.
- 14. McClain L SC, Lesher A, Cina R, Hebra A. Laparoscopic needle-assisted inguinal hernia repair in 495 children. Surg Endosc. 2015;29(4):781-786.
- 15. Ladenhauf HN AM, Schimke C, Yankovic F, Schimpl G. Reduced bacterial colonisation of the glans penis after male circumcision in children A prospective study. J Pediatr Urol. 2013;9(6 Pt B):1137-1144.
- 16. Martin A NR, Kimber C, Pacilli M. The use of tissue glue for circumcision in children: Systematic review and meta-analysis. Urology. 2018;115:21-28.
- 17. Senel FM DM, Oztek S. Minimally invasive circumcision with a novel plastic clamp technique: A review of 7,500 cases. *Pediatr Surg Int.* 2010;26(7):739-745.
- 18. Shalaby R IM, Samaha A, Yehya A, Ibrahem R, Gouda S, Helal A, Alsamahy O. Laparoscopic inguinal hernia repair: Experience with 874 children. *J Pediatr Surg.* 2014;49(3):460-464.
- 19. Celebi S UA, Inal FY, Yildiz A. A single-blinded, randomized comparison of laparoscopic versus open bilateral hernia repair in boys. *J Laparoendosc Adv Surg Tech A*. 2014;24(2):117-121.