OUTCOMES OF ANTENATALLY DETECTED HYDRONEPHROSIS IN A SINGLE CENTRE BETWEEN 2009 – 2020

Luqman Hakeem Rumi Mazeni 4.6.2022

BACKGROUND

Incidence of significant structural anomaly by prenatal ultrasound detection is 1%. (Grisoni et al., 1986)

20 – 30% are congenital anomalies of urinary system.

Variation of etiology and clinical outcome.

Prenatal detection provide expectant parents regarding the condition, etiology, available treatment, and prognosis.

LITERATURE REVIEW

Hydronephrosis is the most frequently detected anomaly on antenatal ultrasound with an incidence of 1-2%. (Hamilton et al, 2013)

Causes of antenatal hydronephrosis can't be determined before birth and is diagnosed postnatally with additional imaging. (Yamaçake & Nguyen, 2012).

Mild dilation at midtrimester ultrasound may resolve or remain stable in the later part of pregnancy or at postnatal scan. No clinical significance and do not require treatment nor prolonged surveillance in a tertiary centre (Cheng et al., 2004) (Maayan-Metzger et al., 2011). Antenatal dilatation of the urinary collecting system could just simply be a dynamic and physiologic process which resolves spontaneously in 36-80% of cases after birth (Sherer., 2000).

 3^{rd} trimester value of an APRD > 7 mm is the most widely used criteria in order to screen patients who may require post-natal investigation. (Ismaili et al., 2004).

Difficult decision to perform further postnatal investigations for parents and clinician alike. (Passerotti et al., 2011).

Various classification and grading systems have evolved in complexity over time. (Vallasciani et al., 2021).

In a systematic review of the literature, it appeared that the risk of urological pathologies increased with increasing degree of hydronephrosis (Passerotti et al., 2011).

Proportion of infants with ANH that required surgery were significantly higher, up to 52%. (Killi et al., 2017) (Paopongsawan et al., 2014).

Screening has become standard practice and guidelines are established including referral to MFM centres and a multidisciplinary approach of postnatal management in a tertiary centre in cases of moderate-severe ANH. (de Grauw et al., 2014) (Nguyen et al., 2014).

OBJECTIVE

To determine the causes of antenatally detected hydronephrosis in UMMC. Evaluation of the findings at 3 months post delivery.

Determination of the outcome at most recent follow up.

To determine the incidence of antenatally detected hydronephrosis in UMMC.

Research question :

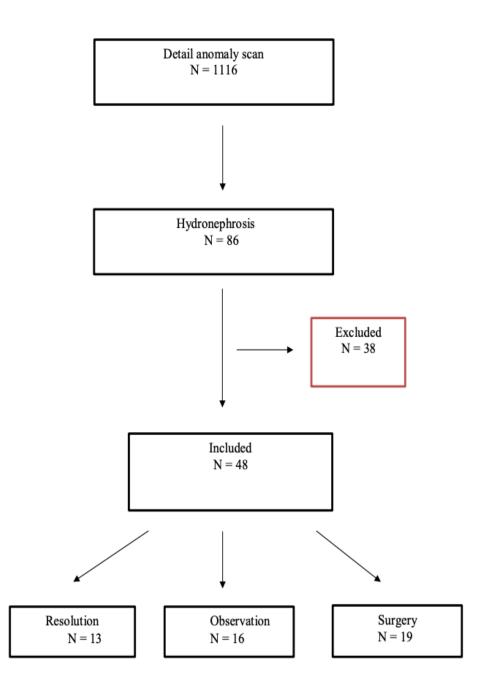
What are the factors that might help determine the outcomes of antenatally detected hydronephrosis?

MATERIALS & METHODS

Observational study.

Retrospective data collection.

Review of antenatal scans at UMMC fetomaternal unit and postnatal investigation.

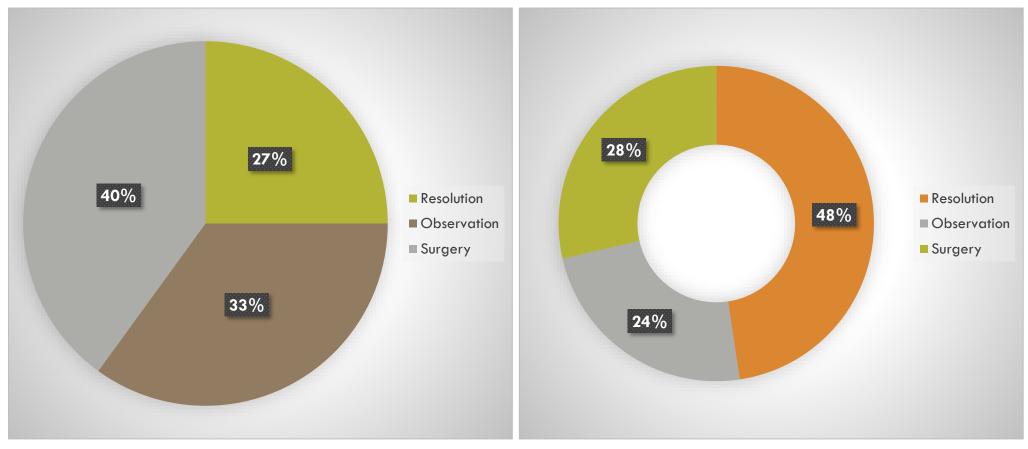

- January 2009 to December 2020
- Multidisciplinary follow up and status
- Study endpoint in May 2022

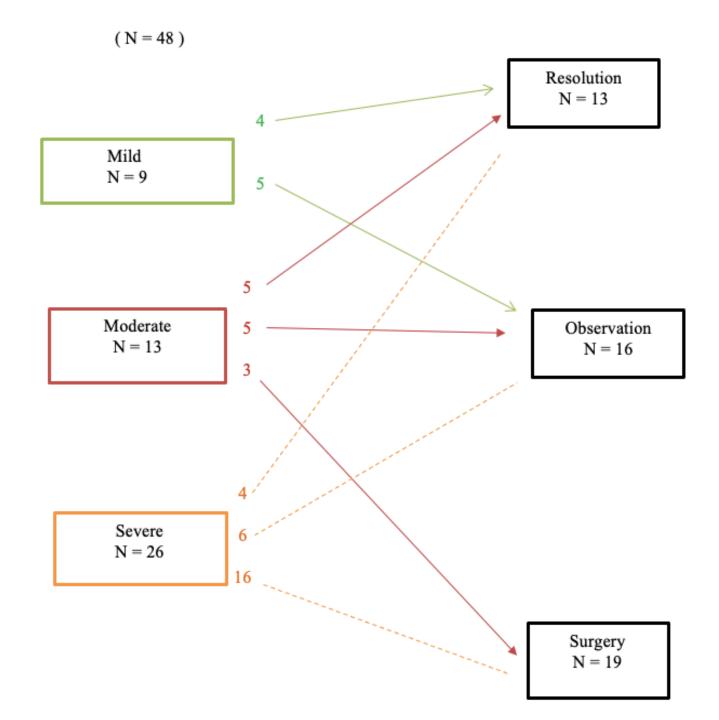
Odds ratio estimated using logistic regression model.

Receiver operating characteristic curve to determine predictor for postnatal surgery.

Incidence in UMMC

Year	Livebirths	Detail scan	Hydronephrosis
2009	4729	57	4
2010	5012	85	5
2011	5949	125	9
2013	6284	103	11
2014	6427	98	7
2015	5445	77	5
2016	5298	88	5
2017	5454	127	13
2018	6005	130	12
2019	5953	114	9
2020	3924	112	6
Total	60,480	1,116	86


0.2%


Demography

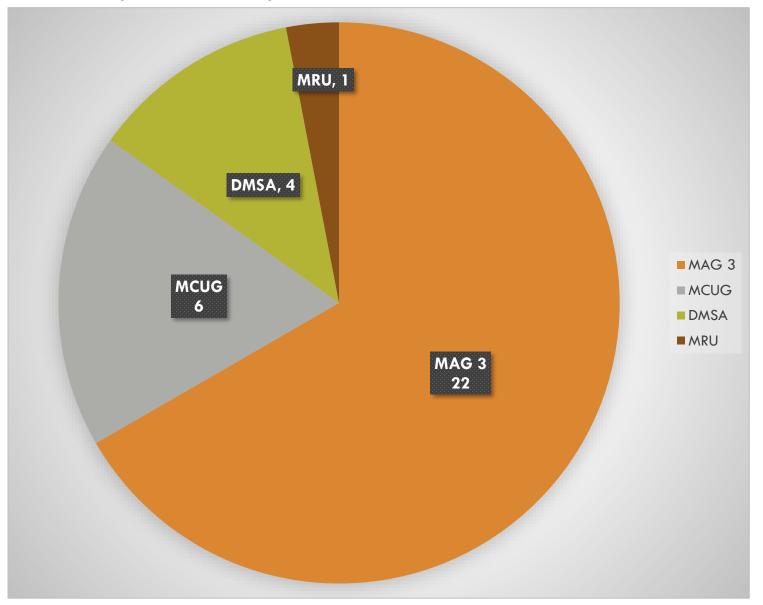
Variable	n (%) / mean <u>+</u> SD/ median (IQR)
Male/Female	32 (66.7) / 16 (33.3)
Birthweight (kilogram)	2.84 ± 0.56
Gestational age at birth (weeks)	37.2 ± 1.9
Gestational age at diagnosis (weeks)	29.6 ± 4.2
Singleton/twin pregnancies	47(97.9)/1(2.1)
Vaginal delivery/caesarean section	25 (52.1) / 23 (47.9)
Maternal age at birth (years)	31.7 ± 4.3
Median age at 1 st postnatal scan (days)	5 (1- 9)
Ethnicity Chinese Malay Indian	4(8.3) 40(83.3) 4(8.3)
Parity Primigravida Multigravida Grandmultiparous	22(45.5) 20(41.7) 6(12.5)
Comorbidity Nil Gestational diabetes Anaemia Others	<mark>24 (50)</mark> 15 (31.3) 3 (6.3) 6 (12.5)
Affected kidney Right Left Bilateral	13 (27.1) 14 (29.2) 21 (43.8)
Referral center Government Private	26 (54.2) 22 (45.8)
Prenatal scan (APD grade) Mild Moderate <mark>Severe</mark>	9(18.8) 13(27.1) 26(54.2)

Outcomes of ANH

Outcomes for bilateral ANH

	Affected renal units (N = 69)				Outcome		
Diagnosis	Right	Left	Bilateral	Resolution	Observation	Surgery	
	N = 13	N = 14	N = 21	N = 13	N = 16	N = 19	
Resolved hydronephrosis	0	3 (21%)	10 (48%)	13 (100%)	0	0	
Persistent hydronephrosis	1 (8%)	3 (21%)	3 (14%)	0	7 (44%)	0	
UPJ obstruction	5 (38%)	3 (21%)	4 (19%)	0	0	12 (63%)	
MCDK	2 (15%)	0	1 (8%)	0	3 (19%)	0	
Duplicated collecting system	0	1 (7%)	2 (10%)	0	1 (6%)	2 (11%)	
Non functioning kidney	2 (15%)	0	1 (8%)	0	3 (19%)	0	
PUV	0	1 (7%)	1 (8%)	0	0	2 (11%)	
VUR	0	1 (7%)	0	0	0	1 (5%)	
Dystrophic kidney	1 (8%)	0	0	0	0	1 (5%)	
Ectopic kidney	1 (8%)	0	0	0	1 (6%)	0	
OLUA	0	1 (7%)	0	0	0	1 (5%)	
Megaureter	1 (8%)	0	0	0	1 (6%)	0	

Eventual diagnosis


Diagnosis	n = 48 (%)
Resolved hydronephrosis	13 (27)
UPJ obstruction	12 (25)
Persistent hydronephrosis	7(14.4)
MCDK	3 (6.3)
Duplicated collecting system	3 (6.3)
Non-functioning kidney	3 (6.3)
PUV	2 (4.2)
VUR	1 (2.1)
Dystrophic kidney	1 (2.1)
Ectopic kidney	1 (2.1)
VUJO	1 (2.1)
Megaureter	1 (2.1)

Diagnosis and type of intervention

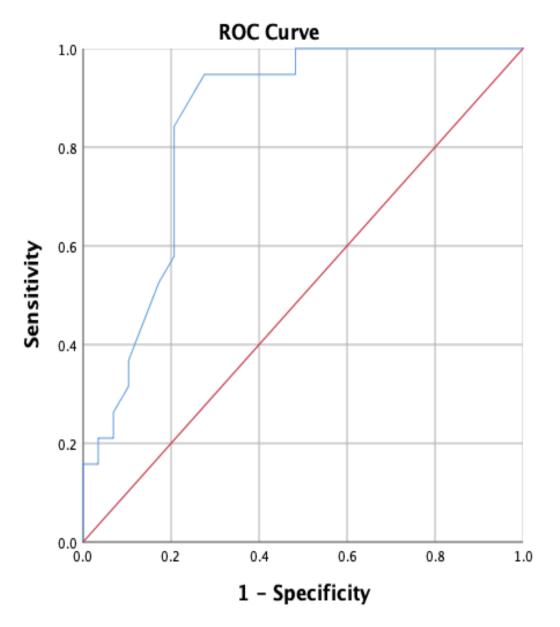
Diagnosis	Surgical intervention N = 19	Type of intervention
UPJ obstruction	12(63%)	Pyeloplasty
Duplex	2(11%)	Ureteric reimplantation and ureter – ureterostomy (n = 1) Resection of left upper moiety (n = 1)

PUV	2(11%)	Fulguration (n = 1) Ablation (n=1)
OLUA	1 (5%)	Ureteric reimplantation
VUR	1 (5%)	Cystoscopy and deflux injection
Dystrophic kidney	1 (5%)	Nephrectomy

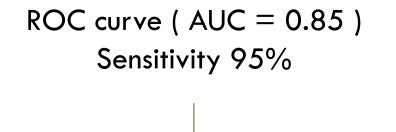
Radiological investigations other than US

		Outcome		
Parameter	Resolution	Observation	Surgery	
Gender				0.521
Male	10	11	11	
Female	3	5	8	
Maternal age (years)				0.937
< 35	9	12	14	
≥ 3 5	4	4	5	
APD grade				
Mild	4	5	0	0.012
Moderate	5	5	3	
Severe	5	6	16	
Laterality				
Unilateral	3	11	13	0.019
Bilateral	10	5	6	

Association between demography and eventual outcome


Characteristics	N = 48	APD grade			P value	
		Mild N = 9 (%)	Moderate N = 13 (%)	Severe N = 26 (%)		
Ethnicity Malay Indian Chinese	40 4 4	6(67%) 2(22%) 1(11%)	11(85%) 0 2(15%)	23(88%) 2(8%) 1(4%)	0.282	
Gender Male Female	32 16	6(67%) 3(33%)	7(54%) 6(46%)	19(73%) 7(27%)	0.486	
Maternal age < 35 ≥ 35	35 13	5(56%) 4(44%)	10(77%) 3(23%)	20(77%) 6(23%)	0.429	
Comorbidity No Yes	24 24	4(44%) 5(56%)	9(70%) 4(30%)	11(42%) 15(58%)	0.266	
Parity Primigravida Multigravida Grandmultiparous	22 20 6	6(67%) 2(22%) 1(11%)	• •	10(38%) 12(46%) 4(16%)	0.628	
Affected kidney Unilateral Bilateral	27 21	4(44%) 5(56%)	8(62%) 5(38%)	15(58%) 11(42%)	0.712	

Association between clinical characteristics and APD grade


Parameters	Odds	95% confidence	P value
	ratio	interval	
Male gender	1.909	0.563 – 6.477	0.3
Non Malay	0.407	0.39 – 4.261	0.453
Unilateral affected kidney	0.431	0.128 – 1.446	0.173
Maternal age \geq 35 years	0.938	0.254 - 3.461	0.923
Birthweight < 2.5 kg	1.391	0.303 – 6.398	0.671
Term delivery	0.891	0.236 - 3.365	0.865
No maternal comorbidity	0.591	0.184 – 1.907	0.377
Severe APD grade	6.564	1.565 – 27.538	0.01

Multivariate analysis

Parameters	Odds ratio	95% confidence	P value
		interval	
Non Malay	0.141	0.088 – 5.301	0.055
Male	0.449	0.068 – 2.961	0.405
Unilateral affected kidney	0.375	0.073 – 1.911	0.238
Maternal age \geq 35 years	0.682	0.088 – 5.301	0.714
Severe APD grade	18.737	2.207 – 159.052	0.007
Birthweight < 2.5 kg	3.533	0.296 - 42.206	0.319
Term delivery	0.135	0.014 – 1.289	0.082
No maternal comorbidity	0.203	0.031 – 1.312	0.094

Parameter	OR	95 % confidence	P value
		interval	
APD > 13 mm	60	5.498 – 655.825	0.001

DISCUSSION

Lower incidence in our study -0.2%.

Most common pathology – UPJ obstruction 25%.

27% of ANH resolved postnatally. Selectivity bias towards diagnosis of transient hydronephrosis.

Timing of first postnatal screening -12 patients (25%) in first 24 hours of life.

Severity of ANH independently associated with postnatal outcome.

- 29 patients were recorded as having severe hydronephrosis during prenatal scan and 16 (55%) required surgical intervention.

- Multivariate analysis found that larger APD independently predicted lower likelihood of ANH reolution. (Longpre et al., 2012)

- Higher grade had sensitivity of 59.4% and specificity of 86.4% for prediction of surgical outcome. (Kiener et al., 2018)

Laterality of affected kidneys and outcome.

- Statistically significant association.
- Bilateral hydronephrosis and requirement for surgical intervention. (Babu et al., 2010)

Limitations : Small cohort Incomplete data registry Absence of standardised protocol for evaluation of ANH.

Recommendations :

Involvement of Neonatologists and Paediatric Urologists during the prenatal screening process to achieve a standardised protocol and appropriate postnatal management.

Multicentre study in a larger cohort with standardised prenatal and postnatal protocols to define the prognostic ability of ANH.

SUMMARY

Great majority of ANH are physiological. Most common pathology is UPJ obstruction.

Children with any degree of ANH are at greater risk of postnatal pathology as compared with the normal population.

Essential parameter quoted as a predictor for surgical intervention was a greater degree of ANH.

Indication for surgery may be quantified by the measurement of APD.

THANK YOU